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ABSTRACT

We present a fast direct solver for numerical simulation of acoustic waves in 3D 

heterogeneous media. The Helmholtz equation is approximated by a 27-point finite-difference 

stencil of second order accuracy that is optimized to reduce the numerical dispersion. Due to the 

optimization, dispersion errors less than 1%, are achieved with model discretization of only five 

points per wavelength. Wave propagation problem requires solving a large system of linear 

equations with complex sparse symmetric coefficient matrix with seismic shots representing the 

right hand side. The first step is the triangular factorization of the coefficient matrix followed by 

solving systems of linear equations with triangular coefficient matrices as a second step. Having 

defined the triangular factors, the second step is very cheap, and its linear scaling with respect to 

the number of shots is the main advantage of direct methods. To reduce memory consumption and 

computational time at the factorization step, the lower triangular factors are compressed using low-

rank approximation of their nonzero blocks. The compression enables rapid solving of systems of 

more than 108 equations corresponding to realistic geophysical models. Accuracy and performance 

comparison of our solver with a highly optimized time-domain solver proves that these approaches 

complement each other - depending on the problem size and computing configuration either solver 

may be preferable.

INTRODUCTION
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Geophysics 3

Numerical simulation of acoustic wavefields in the frequency domain represents an 

important capability to solve problems arising in exploration geophysics. In particular, it serves as 

an engine for acoustic Frequency-Domain Full Waveform Inversion (FD FWI) (Mulder and 

Plessix, 2004; Shin and Cha, 2008; Virieux et al., 2009; Etienne et al., 2014). For macro velocity 

reconstruction, such simulation is usually performed many times for a number of low frequencies 

(up to 20 Hz) at each iteration of this process. 

In acoustic simulations, the pressure wavefield is excited by a point source working as a 

harmonic oscillator at a particular frequency. In exploration seismics, the number of shots can be 

10,000’s or more, with receivers also numbering in the 10,000’s, especially with the proliferation 

of high-channel-count land seismic acquisition systems, some of which reach one million channels 

(Ourabah et al., 2015). 

The time or frequency domain approaches can be used to perform seismic modeling and 

FWI (Vigh, and Starr, 2008; Virieux, and Operto, 2009; Plessix, 2017). A conventional solver is 

based on time-domain simulation followed by a Fourier transform to convert the time-domain 

wavefields to the frequency-domain. A common strategy consists of distributing the seismic 

sources over processors. There is no need to exchange data between processors, and the strategy 

becomes very effective. Good scalability and moderate memory requirements make the approach 

attractive for industrial purposes. However, to be efficient in parallel processing tens of thousands 

of seismic sources, the approach requires significant computational resources. In this paper, we 

provide some experimental data on the solver developed by the Seiscope consortium (see 

https://seiscope2.osug.fr).

Alternatively, seismic modeling and FWI can be performed in the frequency-domain. A 

problem on time harmonic solutions of the wave equation transforms into a boundary value 
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Geophysics 4

problem for the Helmoltz equation. Absorbing boundary conditions are set to reduce reflections of 

waves from the boundaries. Only a few discrete frequencies are needed to build a reliable 

macrovelocity model, and this is the main advantage of using the frequency-domain approach. 

From a practical perspective,  in 3D simulations, this requires solving a system of linear equations 

with huge and sparse coefficient matrix which is some kind of approximation  of the boundary 

value problem. The right-hand sides of the system represent the seismic sources.

Iterative methods can be used to solve the system of linear equations. The Krylov subspace 

iteration methods demonstrate good efficiency (Plessix, 2007; Erlangga and Nabben, 2008; 

Belonosov et al., 2017; Belonosov et al., 2018) and moderate memory requirements, but they 

require good preconditioners and sometimes convergence may be slow or even lost. 

With increased computational power of modern computers (especially distributed memory 

systems, or clusters), it is now  becoming more feasible to apply direct methods for solving systems 

of linear equations with sparse coefficient matrices. The LDLT decomposition of the coefficient 

matrix is first performed before computing the solutions by forward/backward substitutions. The 

factorization is computationally expensive, but it is performed only once per frequency because it 

is independent of the right-hand-side term. The LDLT factorization leads to significant fill-in of 

the matrix (i.e. the number of nonzeros increase). The fill-in strongly depends on ordering the 

columns and rows of the matrix. To reduce the fill-in, the Nested Dissection (ND) method to order 

the matrix entries is used. For 3D problems solved with a finite-difference (FD) method, use of the 

ND method results in reduction of the fill-in by one order of magnitude ( versus , 𝑂(𝑛4) 𝑂(𝑛5))

where  stands for the dimension of a 3D  cubic grid (George, 1973, George, et al., 1994).𝑛 𝑛3
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Geophysics 5

A wide class of matrices arising as discretization from partial differential equations have a 

so called low-rank property. That is, the fill-in in its direct factorization has low rank off-diagonal 

blocks.  Based on this property, the fill-in can be approximated by low-rank matrices or matrices 

of special hierarchical structure with low-rank blocks (Chandrasekaran et al., 2006; Xia et al., 

2010; Ghysels et al., 2016). Structured methods (Xia, 2013; Wang et al., 2016) are based on using 

the structural low-rank approximation, and this helps to improve theoretical performance. 

In this paper, we present a multifrontal direct method of solving a system of linear 

equations that arises as an optimal 27-point FD approximation of a boundary value problem for 

the Helmholtz equation. In this method, the coefficient matrix constructed using special kind of 

ordering is factorized in a product of triangular matrices. To find the unknowns, two systems with 

triangular coefficient matrices need to be solved. 

Compared to time-domain methods or the frequency-domain iterative methods, the method 

has an advantage: compared to the cost of the matrix factorization extra right-hand sides do not 

appreciably increase the computational cost (Bakulin et al., 2018). To reduce the issue of 

inordinate memory consumption typical for direct solvers, we apply data compression based on 

the Low-Rank approximation and hierarchical formats of storing data (Aminfar et al., 2016). We 

further implement Message Passing Interfaces-based (MPI) parallelization inside the solver in 

order to optimize execution on Distributed Memory High-Performance Computers (clusters).

Several ways of utilizing the low-rank property in algorithms for numerical solution of 

frequency-domain wave equations are known. Block Low Rank methods (Amestoy et al., 2015, 

Pichon et al., 2018) were proposed as simple alternatives to structured methods. Although they 

cannot reach the performance of the structured methods, simplicity of implementation is their 
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Geophysics 6

attractive feature. Hierarchically Semiseparable (HSS) formats (Xia et al., 2010; Wang et al., 2011; 

Xia, 2013) were proposed to achieve the best theoretical performance. We apply plain low-rank 

approximations for subdiagonal blocks of the triangular factor of the LDLT factorization and use 

the Hierarchical Off-Diagonal Low Rank (HODLR) format for approximation of the diagonal 

blocks. A similar approach was used by Glinskiy, et al. (2017) but MPI optimization in that paper 

was targeted to minimize the peak memory consumption. In the current paper the goal is 

performance improvement.

This paper is organized as follows: The first section discusses the setting of the boundary 

value problem for the Helmholtz equation, use of Perfectly Matched Layers (PML) to diminish 

wave reflections from the boundaries and a FD approximation of the boundary value problem. We 

describe a procedure for minimization of numerical dispersion and use it to construct the optimal 

27-point stencil. Compared to classical seven-point stencil, the optimization results in a 1.5x 

decrease of the number of points per wavelength needed to keep the numerical dispersion error 

within 1%. In 3D, this decrease leads to a 3x reduction of the coefficient matrix size and even 

bigger factor for the peformance. We describe a special ordering of the grid points defined by the 

ND method which results in a special structure of the matrix.

Factorization and solving steps are the main ingredients of our direct method of solving 

systems of linear equations. The factorization process includes compression of matrix blocks based 

on the low-rank approximation. The second section is devoted to details of the software 

implementation. In the last section, results of the numerical experiments are given. Using two 

realistic subsurface models we demonstrate the accuracy of the solver, its MPI scalability and 

performance. We compare the solver to the industrial time-domain solver provided by Seiscope 

consortium and demonstrate that both solvers complement each other. 
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METHODS

A finite-difference scheme for the Helmholtz equation

In the frequency domain, acoustic wave propagation in is governed by the Helmholtz equation𝑅3 ∆𝑢(𝑥) + 𝑘2(𝑥)𝑢(𝑥) = 𝑓(𝑥),                                                                                       (1)

where is the Laplace operator, is the unknown function (pressure), ∆ 𝑢(𝑥) = 𝑢(𝑥1, 𝑥2,𝑥3) 𝑘(𝑥)

 is the wavenumber,  is the angular temporal frequency, and  is the sound velocity = 𝜔/𝑐(𝑥) 𝜔 𝑐(𝑥)

at point  1. The pressure is excited by a source represented by function  in the right hand side 𝑥 𝑓(𝑥)

For a seismic shot located at source point  the right hand side has a form of delta-. 𝑥𝑠 = (𝑥𝑠
1,𝑥𝑠

2,𝑥𝑠
3)

function 𝑓(𝑥) = 𝛿(𝑥 ― 𝑥𝑠).                                                                                                     (2)

If equation 1 is considered in an unbounded domain, for unique resolvability some condition (e.g. 

radiation condition (Vainberg, 1966)) should be posed at infinity.

In practice, the solution is to be found in some parallelepiped  where the velocity function 𝐷
is given and the source point is located. To reduce the influence on the solution of the limited 

computational domain, we apply PML technique (see, e.g. Berenger, 1994; Bermúdez et al., 2007). 

For this purpose,  is immersed in some bigger parallelepiped  as shown schematically on Figure 𝐷 𝐷
1. If free-surface boundary conditions need to be imposed, the respective faces of  and  lie in 𝐷 𝐷

1 To avoid cumbersomeness in formulas, we use along with triples and as notations for 𝑥 (𝑥1,𝑥2,𝑥3) (𝑥,𝑦,𝑧) 

independent spatial variables. It should be clear from the context which notation is used, and we hope that such shortcut 

would not confuse the reader.
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Geophysics 8

the same plane. The differential equation is extended to  in the form of second-order partial 𝐷
differential equation 

3∑𝑖 = 1

𝛼𝑖(𝑥𝑖) ∂∂𝑥𝑖(𝛼𝑖(𝑥𝑖)∂𝑢∂𝑥𝑖) + 𝑘2(𝑥)𝑢(𝑥) = 𝑓(𝑥), 𝑥 ∈ 𝐷.                                           (3)

In this equation,  is smoothly extended to  ,  is extended by zero. Functions 𝑘(𝑥) 𝐷PML 𝑓(𝑥)

𝛼𝑖(𝑥𝑖) =
𝑖𝜔𝑖𝜔 + 𝑑𝑖(𝑥𝑖)                                                                                                            (4)

are complex-valued defined via damping functions  which are zeros for points within . 𝑑𝑖(𝑥𝑖)  𝐷
Respectively,  are equal to one in , and equation 3 coincides with equation (1). To provide 𝛼𝑖(𝑥𝑖) 𝐷
attenuation of the solution, damping functions are positive within respective PMLs. To keep 

symmetry of the coefficient matrix in the FD approximation, we divide the partial differential 

equation 3 by  and obtain 𝛼(𝑥) = 𝛼1(𝑥1)𝛼2(𝑥2)𝛼3(𝑥3)

3∑𝑖 = 1

𝛼𝑖(𝑥𝑖)𝛼(𝑥)

∂∂𝑥𝑖(𝛼𝑖(𝑥𝑖)∂𝑢∂𝑥𝑖) +
𝑘2(𝑥)𝛼(𝑥)

𝑢(𝑥) =
𝑓(𝑥)𝛼(𝑥)

 .                                                

                                         

     (5)

On the boundary of domain  the homogeneous Dirichlet condition is posed𝐷
                                           𝑢(𝑥)|𝑥 ∈ ∂𝐷 = 0.                                                                             (6)

Differential equation 5 (or 3) along with boundary condition 6 is the boundary value problem used 

for numerical simulation of acoustic waves in the frequency domain. 

For numerical solution of this boundary value problem we first introduce a rectangular 

equidistant grid in . The grid points  are defined as multiples of integer triplets  𝐷 (𝑥𝑖,𝑦𝑗,𝑧𝑘) (𝑖,𝑗,𝑘)

with grid step . A discrete analog of the unknown function is defined as ℎ 𝑢𝑖𝑗𝑘 𝑢(𝑥,𝑦,𝑧) 𝑢𝑖𝑗𝑘 = 𝑢
 and discretization of the right-hand side is similarly done. (𝑥𝑖,𝑦𝑗,𝑧𝑘) 𝑓𝑖𝑗𝑘 

𝑓(𝑥)𝛼(𝑥) 
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Geophysics 9

Differential equation 5 is approximated using FD schemes. To reduce impact of numerical 

dispersion, one can use FD schemes of higher order of approximation (Dablain, 1986, Liu and Sen, 

2011). Such schemes use wider stencils which may result in cost increase at the stage of matrix 

factorization. 

To approximate the differential equation at point , we use a 27-point FD (𝑥𝑖,𝑦𝑗,𝑧𝑘)

approximation of second-order accuracy

1∑𝑖0 = ―1

1∑𝑗0 = ―1

1∑𝑘0 = ―1

𝛽𝑖,𝑖0,𝑗,𝑗0,𝑘,𝑘0
𝑢𝑖 + 𝑖0,𝑗 + 𝑗0,𝑘 + 𝑘0

= 𝑓𝑖𝑗𝑘                                                         (7)

to boundary value problem 5 and 6. To define coefficients  we represent the left-hand 𝛽𝑖,𝑖0,𝑗,𝑗0,𝑘,𝑘0

side of the equation 7 as a linear combination of seven terms with weight coefficients  𝛾1∆1𝑢𝑖𝑗𝑘 + 𝛾2∆2𝑢𝑖𝑗𝑘 + 𝛾3∆3𝑢𝑖𝑗𝑘
+ 𝑘2(𝑥𝑖,𝑦𝑗,𝑧𝑘)(𝑤1𝑢𝑖𝑗𝑘 +

𝑤2

6 ∑
(2)

𝑢𝑖1,𝑗1,𝑘1
+

𝑤3

12∑
(3)

𝑢𝑖1,𝑗1,𝑘1
+

𝑤2

8 ∑
(4)

𝑢𝑖1,𝑗1,𝑘1) .           (8)

Operator  in sum 8 is a second-order accuracy FD approximation of the Laplace ∆𝑗, (𝑗 = 1,2,3)

operator represented by stencil marked (j) in Figure 2. In fact, in Figure 2 only parts of 𝑧 ―
respective stencils are depicted. Obviously, to get an approximation of the Laplace operator, the 

sum of weights  should be equal to one. Likewise, sums in parentheses in expression 8 are the 𝛾𝑗
second order accuracy approximations of  that correspond to stencils depicted in Figure 𝑢(𝑥𝑖,𝑦𝑗,𝑧𝑘)

3. In these stencils, the red ball denotes the central point and does not participate in approximations. 

Respective weights should also sum up to one. 

For FD operator 8, the dispersion analysis gives an explicit expression 𝑐𝑝ℎ
for the phase velocity of a plane wave propagating in direction (𝜑,𝜃,𝐺;𝛾1,𝛾2,𝛾3,𝑤1,𝑤2,𝑤3,𝑤4) 
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Geophysics 10

defined by spherical angles  Here,   is the reciprocal of the number of grid points per 𝜑,𝜃. 𝐺 =
𝜔ℎ2𝜋𝑐

wavelength. Function

Ψ(𝛾1,𝛾2,𝛾3,𝑤1,𝑤2𝑤3𝑤4) = ∭𝐷 |
𝑐𝑝ℎ(𝜑,𝜗,𝐺;𝛾1,𝛾2,𝛾3,𝑤1,𝑤2𝑤3𝑤4)𝑐 ― 1|

2𝑑𝜑𝑑𝜃𝑑𝐺    (9)

represents the squared dispersion error averaged with respect to directions and values of  Domain 𝐺.
of integration in integral 9 is defined as 

𝐷 = {(𝜑,𝜃,𝐺):0 ≤ 𝜑 ≤ 2𝜋, ― 𝜋
2

≤ 𝜃 ≤ 𝜋
2

, 𝐺min ≤ 𝐺 ≤ 𝐺max}.                                          (10)

Minimizing function 9 with respect to weights we find the optimal values. In Table 1 one can 

find the optimal weights for range of  frequencies 4 - 10 Hz.

Dispersion curves for 50 plane waves propagating in randomly chosen directions are 

depicted in Figure 4. It is clear, that eight points per wavelength is sufficient to keep the dispersion 

error less than 1%. To justify our choice of using a 27-point optimal stencil, we note that for the 

classical seven-point approximation to reach the level of 1% dispersion error, twelve points per 

wavelength is required.  Optimization of FD stencils for minimization of the numerical dispersion 

is a popular topic of many papers (Jo, et al., 1996; Hustedt et al., 2004; Operto et al., 2007). 

A system of linear algebraic equations

FD approximation 7 of boundary value problem 5, 6 takes the form of a system of linear 

equations 

                               𝐀𝐮 = 𝐟,                                                                                                       (11)

where  stands for a column of values at grid points of the unknown function, and  has 𝒖 𝑢𝑖𝑗𝑘 𝐟
components . For any grid point  there are at most 27 non-zero coefficients in equation 𝑓𝑖𝑗𝑘 (𝑖,𝑗,𝑘)
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Geophysics 11

7. In other words, matrix  is sparse, complex valued (due to PMLs) and symmetric (but not 𝐀
Hermitian). Coefficients  come to the diagonal of the matrix whereas the locations of 𝛽𝑖,0,𝑗,0,𝑘,0
remaining 26 non-zero coefficients depend on the ordering of the grid points. 

To order the grid points, we use the Nested Dissection (ND) algorithm characterized by 

substantial reduction in memory consumption (George, 1973; George et al., 1994; Davis et al., 

2016) compared to conventional ordering. For convenience, we illustrate the ND algorithm in 

Figure 5 where the computational domain is depicted as a parallelepiped. The grid points are not 

shown for simplicity. The algorithm deals with subsets of the finite set of grid points, but, for 

visibility, we operate with geometrical objects and terms. We sequentially divide the domain into 

subdomains using separators until the sizes of the subdomains reach computationally 

manageable level.

At the first step, in Figure 5(a), the separator is shown as a horizontal gray plane labeled 

#15. The plane passes through the grid points and divides the parallelepiped into approximately 

equal subdomains. The entire set of grid points disjoins into three subsets: the upper (the first 

subset) and the lower (the second subset) subdomains, and the separator itself (the third subset). 

Let us sequentially order the grid points (subset one, subset two, subset three). At this point, 

ordering within the subsets is not specified. 

A stencil centered at some grid point  connects the center with 26 neighbors, i.e. (𝑖,𝑗,𝑘)
points whose grid coordinates differ from the center coordinates by not more than one. Obviously, 

for a center from the upper subdomain the neighbors belong to the upper subdomain, or, possibly 

to the separator. From this observation, we get the following block structure

𝐀 = (
𝐀uu 0 𝐀u,s15

0 𝐀ll 𝐀l,s15𝐀s15,u 𝐀s15,l 𝐀s15,s15

).                                                                                          (12)
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Geophysics 12

of the coefficient matrix. 

The process can be repeated recursively. In Figure 5(b), a vertical gray plane partitions the 

subdomains. This vertical plane contains two separators #13 and #14. We order the grid points so 

that points from separators #13 and #14 and #15 are put at the end of the list and grid points from 

four subdomains are arranged first, and we have a block -matrix7 × 7

𝐀 = (
𝐀11 0 0 0 𝐀1,s13

0 𝐀1,s15

0 𝐀22 0 0 𝐀2,s13
0 𝐀2,s15

0 0 𝐀33 0 0 𝐀3,s14
𝐀3,s15

0 0 0 𝐀44 0 𝐀3,s14
𝐀4,s15𝐀s13,1 𝐀s13,2 0 0 𝐀s13,s13

0 𝐀s13,s15

0 0 𝐀s14,3 𝐀s14,4 0 𝐀s14,s14
𝐀s14,s15𝐀s15,1 𝐀s15,2 𝐀s15,3 𝐀s15,4 𝐀s15,s13

𝐀s15,s14
𝐀s15,s15

).                         (13)

In this formula matrix block indices 1, 2, 3, 4 indicate grid points from subdomains, whereas , s13

 relate to points from the respective separators. s14, s15

The third level separators #9, #10, #11, #12 are shown in Figure 5(c). Every higher level 

separator partitions subdomains obtained at the previous level in two smaller subdomains and the 

separator itself. So, steps of such process produce  subdomains and separators. The grid 𝑘 2𝑘 2𝑘 ―1 

points are ordered so that separators in reverse ordering follow the points from subdomains. The 

coefficient matrix becomes a block  matrix. For  the structure is (2𝑘 + 1 ―1) ×  (2𝑘 + 1 ―1) 𝑘 = 3

depicted in the left image of Figure 6. 

LDLT factorization with compression

To solve the system of linear equations 8 with a sparse complex symmetric coefficient 

matrix by a direct method, LDLT factorization is first applied:𝐀 = 𝐏 ∙ 𝐀 ∙ 𝐏𝐭 = 𝐋 ∙ 𝐃 ∙ 𝐋𝐭.                                                                                                   (14)
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Geophysics 13

Here  denotes a permutation matrix that appear due to pivoting,   is a block-diagonal matrix 𝐏 𝐃
with blocks of size one or two,  is a lower triangular matrix with units on the diagonal, ‘t’ indicates 𝐋
the transposed of the matrix. Factorization 14 is considered as a variant of Gauss elimination (see 

e.g. Bunch et al., 1976; Duff et al., 1979; Duff et al., 1983; Schenk and Gärtner, 2006).

Let the matrix be represented in a block form as

𝐀 = (
𝐀11 𝐀12 ⋯ 𝐀1𝐾𝐀21 𝐀22 ⋯ 𝐀2𝐾⋮ ⋮ ⋱ ⋮𝐀𝐾1 𝐀𝐾2 ⋯ 𝐀𝐾𝐾),                                                                          (15)

with   blocks  Diagonal blocks are square though may have different orders 𝑛𝑖 × 𝑛𝑗 ― 𝐀𝑖𝑗. 𝐀𝑖𝑖 𝑛𝑖.  
Block structure of matrices  and is as follows𝑳 𝑫 

𝐋 = (
𝐋11 ⋯𝐋21 𝐋22 ⋯⋮ ⋮ ⋱ ⋮𝐋𝐾1 𝐋𝐾2 ⋯ 𝐋𝐾𝐾),   𝐃 = (

𝐃1 ⋯𝐃2 ⋯⋮ ⋮ ⋱ ⋮⋯ 𝐷𝐾).                   (16)

Diagonal blocks are lower triangular square matrices of order with units on the diagonals, 𝐋𝑗𝑗 𝑛𝑗 
are diagonal block matrices with blocks of size one or two. 𝐃𝑗 

A pseudo-code of a block LDLT algorithm (see Algorithm 1) uses function FLDLT that 

solves the LDLT factorization problem for diagonal blocks of sizes . These problems are 𝑛𝑖 × 𝑛𝑖
considered as 'elementary' with respect to block structure of matrix . 𝐀

for j=1:K

      for p =1:j-1

                                      𝐀𝑗𝑗 = 𝐀𝑗𝑗 ― 𝐋𝑗𝑝𝐃𝑝𝐋𝑡𝑗𝑝                                                          (17)

      end

                        [𝐋𝑗𝑗,𝐃𝑗, 𝐏𝑗] = FLDLT(𝐀𝒋𝒋)                                                            (18)

      for i=j+1:K
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Geophysics 14

        for p =1:j-1

                                                    𝐀𝑖𝑗 = 𝐀𝑖𝑗 ― 𝐋𝑖𝑝𝐃𝑝𝐋𝑡𝑗𝑝                                                (19)

        end

                                       𝐋𝑖𝑗 = 𝐀𝑖𝑗𝐏𝑡𝑗𝐋 ―𝑡𝑗𝑗 𝐃 ―1𝑗                                                                 (20)

         end

end

Algorithm 1: Pseudo-code of a block version of LDLT factorization. Sparsity of the matrix is taken 

into account by skipping values of indices  and  that correspond to fully zero blocks in equations 𝑖 𝑝
17, 19 and 20.

In equations 18 and 20,  is a permutation matrix that appears due to ‘restricted’ pivoting 𝐏𝑗
applied to diagonal blocks of the matrix being decomposed in order to improve numerical stability. 

Low impact on performance is the main reason why we choose restricted pivoting. However, 

restricted pivoting is expected to be less efficient for numerical stability than the partial pivoting 

that involves the elements of the whole panel. To attest the method, we refer to Schenk and Gärtner, 

2006 where similar technique is described.  Our numerous experiments confirm numerical stability 

of the results.

Factorization traverses from the tree bottom to its top. Matrix inherits the block structure 𝐋 

of the lower triangle of matrix , but its blocks have more nonzero elements than blocks of  (fill-𝐀 𝐀
in phenomenon). The phenomenon can be easily understood from equation 19 for Schur updates. 

Gray shading in Figure 6 (left) is used to illustrate the ‘fill-in factor’ (ratio of the number of nonzero 

elements in the block to the total number of the block elements). The fully zero blocks are white 
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Geophysics 15

colored, and those in black mean the fill-in factor is close to one. As illustrated in Figure 6 (left) 

blocks on the lower and right side of matrix  have bigger fill-in factors and may be larger in size. 𝐿
Figure 6 depicts the structure of factor , but to some extent, this also describes the lower 𝐋

triangle of matrix  (the upper triangle can be obtained by reflecting the picture with respect to 𝐀
the main diagonal). The elimination tree (ET) for matrix  has a binary structure (Figure 7). Recall 𝐀
that for LDLT factorization, dependencies among panels are indicated by the ET edges, and these 

dependencies denote directions how updates move from a 'son' to its 'father', 'grandfather' and 

beyond up to the tree 'root' along the tree branches. For example, Figure 7 shows that panel #13 

depends on panels #9 and #10, which in turn depend on #1, #2, #3, #4. Panel #13 receives updates 

not only from its 'sons' #9 and #10 but also from 'grandsons' #1, #2, #3, #4. These updates are 

independent of #9 and #10 - this additional parallelism can be used for performance optimization. 

Fortunately, for the FD approximation of the Helmholtz equation, matrix  blocks lying 𝐿
below the diagonal possess data sparsity property, i.e. they are Low-Rank. -matrix  is 𝑀 ×  𝑁 𝐁
called data sparse if it can be approximated by a matrix  of rank . Such an 𝐁𝒓 𝑟 ≪ min (𝑀,𝑁)
approximation can be written as𝐁 = 𝐁𝒓 + 𝜹𝐁 = 𝐔 ∙ 𝐕𝑡 + 𝜹𝐁, ‖𝜹𝐁‖ < 𝜀‖𝐁‖ ,                                                                      (21)

with matrix , matrix  and  being some threshold parameter. Matrices 𝑀 ×  𝑟 ― 𝐔 𝑁 ×  𝑟 ― 𝐕  𝜀 > 0

 and  are stored instead of . Approximation 21 is used for data compression in the LDLT 𝐔 𝐕  𝐁
factorization algorithm we use; the lower the sum  the bigger is the compression 𝑟/𝑀 +  𝑟/𝑁,
effect. The compression also helps to reduce floating point operations count.

The Low-Rank approximation in equation 21 provides a foundation for data compression.  

For spectral matrix norm or Frobenius norm, the truncated Singular Value Decomposition (SVD) 

(see Golub and Loan, 1996; Godunov et al., 2013) can be used to solve the minimization problem 
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Geophysics 16

                                 𝐁𝒓 = arg min
rank 𝐗 = 𝒓 ‖𝐁 ― 𝐗‖2.                                                              (22)

The solution can be considered as the optimal approximation of matrix  by rank matrices. SVD 𝐁 𝑟  

provides a constructive solution  to the approximation problem 22 in the form of matrices  and 𝐁𝒓 𝐔
 such that  (cf. 21). The SVD algorithm is numerically stable but time consuming. 𝐕 𝑩𝒓 = 𝐔 ∙ 𝐕𝑡

Many alternative approaches can be found in the literature. We use an approach based on 

randomized sampling (Martinsson and Voronin, 2011) because of its high performance and 

robustness.

Data sparsity in matrix  blocks is schematically illustrated in Figure 6 (right) where some 𝐋
blocks are shown as containing two narrow black blocks schematically representing respective 

matrices  and  that are stored instead of the block they approximate. Usually these blocks are 𝐔 𝐕𝑡
dense, which is why they are black in the Figure. Obviously, due to some overhead, approximation 

21 of matrix  blocks makes sense for high enough fill-in factors (Figure 6, right) whereas some 𝐋
pale gray blocks remain 'as is'. 

There is one more possibility to compress matrix : diagonal blocks of this matrix in Figure  𝐋
6 (right) can be approximated by Hierarchically Off-Diagonal Low Rank (HODLR) matrices 

(Aminfar et al., 2016; Glinskiy et al., 2017; Kostin et al., 2017). To get this structure, respective 

diagonal blocks of  are represented as block matrices with sub-blocks of half size and 𝐋 2 ×  2 

approximation (21) is applied to the off-diagonal sub-block. In our solver, this procedure is applied 

recursively to the diagonal blocks several times until a small size is reached.

Solving step

Having defined factors in factorization 11, one can solve the system of linear equations 14 

by inverting triangular matrices
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Geophysics 17

𝐰 = 𝐃 ―1𝐋 ―1𝐏𝐟;𝐮 = 𝐏𝑡𝐋 ―𝑡𝐰.      
                                                                                                                         (23)

In a case of several right-hand sides, vectors should be treated as matrices comprised of 𝐟, 𝐲, 𝐳, 𝐮 

respective column-vectors, and computations 23 can be parallelized with respect to columns. 

During computation of factorization 14 matrix  is compressed to reduce memory 𝐋
consumption. The compressibility factor depends on threshold , frequency and some other 𝜀 𝜔 

parameters; in our experiments compressibility factor varied from 3 to 7. Due to compression, 

equation 14 is no longer valid and should be replaced with𝐀 = 𝐋 ∙ 𝐃 ∙ 𝑳𝑡 + 𝜹𝐀                                                                                                                    (24)

where  denotes a perturbation due to compression errors. The solution obtained by formulas 21 𝜹𝐀
may become inaccurate. To improve the accuracy one can carry out a few steps of the iterative 

refinement (Wilkinson, 1964). Having computed factorization 14, the overhead due to inclusion 

of the iterative refinement in the solving process is low. 

Provided the norm of perturbation  is small enough and the coefficient matrix is 'not-𝜹𝑨
too-badly-conditioned', the iterative refinement converges. The threshold  directly impacts the 𝜀
compressibility factor - the bigger its value, the bigger is the compressibility factor, suggesting 

that the threshold value should be increased. However, a larger threshold value implies an increase 

in the norm of perturbation  in 24 which may lead to loss of convergence of the iterative 𝜹𝐀
refinement, or at least require more iterations to converge. Therefore, unjustifiably large threshold 

values should be avoided. Due to this trade-off, in practice, the threshold value is established by 

trial and error.

SOFTWARE IMPLEMENTATION DETAILS

Page 17 of 60 GEOPHYSICS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60
This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 

© 2019 Society of Exploration Geophysicists.

D
o
w

n
lo

ad
ed

 0
4
/0

4
/1

9
 t

o
 1

3
0
.7

0
.8

.1
3
1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

E
G

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 T
er

m
s 

o
f 

U
se

 a
t 

h
tt

p
:/

/l
ib

ra
ry

.s
eg

.o
rg

/



Geophysics 18

Some standard functionality needed for our solver is taken from the Intel® Math Kernel 

Library (https://software.intel.com/en-us/intel-mkl). This library provides highly optimized BLAS 

(www.netlib.org/blas) and LAPACK (www.netlib.org/lapack) functions. In our solver we use 

OMP parallelization implicitly by calling threaded versions of BLAS and LAPACK functions. 

This is the only way of using OMP threading in the solver, there is no explicit OMP parallelization 

in it.

Our solver is targeted for distributed memory systems (clusters) using MPI. The binary 

structure of the ET of the LDLT factorization algorithm provides good MPI parallelization 

opportunities. Figure 8 shows mapping of the ET structure on compute nodes for the case of four 

nodes. Each subtree (denoted by dashed ellipses) is assigned to a particular compute node. The 

nodes are assumed to have big enough RAM to contain respective input data and results. It is clear 

that up to the level 3 (in Figure 8, this level is marked with a dashed line passing the ET nodes) of 

the ET, the compute nodes process their portions of data independently and there is no data 

exchange between them. 

However, this kind of parallelism decreases while the process traverses up along the tree, 

and at a particular level of the tree, the number of nodes becomes less than the number of cluster 

nodes. Moreover, while moving up along the ET, fill-in factors of respective panels increase with 

increasing memory requirements and numbers of floating point operations.

Upon reaching the level where the ET width becomes less than the number of cluster nodes, 

finer granulation of the matrix being processed is applied. In other words, the panels are subdivided 

into subpanels which are assigned to separate cluster nodes. Unfortunately, such subdivision does 

not provide a binary structure of the ET suitable for parallelization. However, it allows delegating 

computation of some Schur updates to the lower part of the tree, thus improving parallelism.
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Geophysics 19

One of costly operations in the LDLT factorization is the Schur update 

          𝐀𝑖𝑗 = 𝐀𝑖𝑗 ― ∑𝑝 < 𝑗𝐋𝑖𝑝𝐃𝑝𝐋𝑡𝑗𝑝                                                                                                          (25)

(see the loop in Algorithm 1). For th node of the ET, equation 25 means gathering this 𝑝 ― 𝑗 ―
node updates from sons, grandsons, etc.  The number of summands in this formula may be rather 

large, and matrices are given factorized in products of ‘thin’ matrices and they are distributed 𝐋𝑖𝑝 

along different cluster nodes. To apply the Schur update 25, we use different strategies depending 

on the position of ET node with respect to the dashed line. 

For the ET nodes lying above the dashed line, or, equivalently, for the values , we split the 𝑗
total number of updates (i.e. indices ) into pairs. Each pair is summed up on a separate cluster 𝑝
node. The process is repeated several times until all updates are summed up. Finally, the sum of 

all updates is added to block . The number of steps is proportional to the logarithm of the total  𝐀𝑖𝑗
number of updates. 

For the ET nodes below the dashed line, all operations are performed on the same compute 

node but there are also some peculiarities. As it was already mentioned above, nonzero 

subdiagonal blocks in the leftmost panels of the triangular factor are stored ‘as is’, without applying 

low-rank approximation. This is beneficial both from the performance and memory consumption 

points of view. So, to compute Schur update 25 with blocks in the conventional format, standard 

BLAS functionality (with some modifications due to sparsity of the blocks) is needed.

Starting from some level, the low-rank approximation is applied to the blocks, and the low-

rank arithmetic is switched on. Let block and block  be represented by 𝑚1 × 𝑛 ― 𝐋𝑖𝑝 𝑚2 × 𝑛 ― 𝐋𝑗𝑝
low-rank approximants  and where and  have sizes  and 𝐔𝑖𝑝 ∙ 𝐕𝑡𝑖𝑝 𝐔𝑗𝑝 ∙ 𝐕𝑡𝑗𝑝 𝐔𝑖𝑝  𝐕𝑖𝑝 𝑚1 × 𝑟1 𝑛 × 𝑟1,  

whereas , and respectively. Assuming  update 𝐔𝑗𝑝  𝐕𝑗𝑝 have sizes 𝑚2 × 𝑟2 and 𝑛 × 𝑟2, 𝑟1 ≤ 𝑟2, 𝐋𝑖𝑝
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Geophysics 20

 becomes a product of matrix and matrix   (if 𝐃𝑝𝐋𝑡𝑗𝑝 𝑚1 × 𝑟1 ― 𝐔𝑖𝑝 𝑟1 × 𝑚2 ― (𝐔𝑗𝑝(𝐕𝑡𝑗𝑝(𝐃𝑡𝑝𝐕𝑖𝑝))𝑡)𝑡
the opposite inequality takes place matrix  is decomposed in a product of 𝑟1 > 𝑟2  𝐋𝑖𝑝𝐃𝑝𝐋𝑡𝑗𝑝 𝑚1 ×

matrix and matrix). 𝑟2 ― 𝑟2 × 𝑚2 ―
Summing up rank  update and rank  update   can be obtained by 𝑟1 𝐔1 ∙ 𝐕𝑡

1 𝑟2 𝐔2 ∙ 𝑽𝑡
2

concatenation of matrices

                   𝐔1 ∙ 𝐕𝑡
1 + 𝐔2 ∙ 𝐕𝑡

2 = (𝐔1 𝐔2)(𝐕1 𝐕2)𝑡
.                                                                              (26)

The result has the desired form but probably the representation is not optimal - matrices (𝐔1 𝐔2) 

and   have  columns which may be greater than their ranks. In other words, the (𝐕1 𝐕2) 𝑟1 + 𝑟2 

product needs to be recompressed

(𝐔1 𝐔2)(𝐕1 𝐕2)𝑡
= 𝐔𝐕𝑡.                                                                                                        (27)

This is the same problem as the compression problem. 

3D NUMERICAL EXPERIMENTS

In this section, we describe a few numerical experiments to validate our implementation. 

The experiments were performed on the Linux supercomputer Shaheen II 

(https://www.hpc.kaust.edu.sa/content/shaheen-ii) at King Abdullah University of Science and 

Technology (KAUST, Saudi Arabia). Top 500 Linpack performance of this cluster is 5.5 Pflops/s 

(https://www.top500.org/list/2018/11/?page=1 ). Each compute node is supplied with two 

processors Intel® Xeon® CPU E5-2698 v3 @ 2.3 GHz (32 cores in total) and  128 GB RAM; this 

configuration provides theoretical peak performance of 1.2 Tflops/s per node. 

The threshold parameter was taken from the range 10-5-10-4. We used one MPI process per 

cluster node. The stopping criterion for the iterative refinement was set to achieve the following 

inequality 
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Geophysics 21

 
‖𝐀𝐮 ― 𝐟‖‖𝒇‖ < 10 ―5.                                                                                                                           (28)

Models

To demonstrate the accuracy of the method first we compare the numerical solution for a 

homogeneous model to the analytical solution. For a synthetic model with the velocity being 

linearly dependent on the depth we compare solutions obtained with different grid steps.

Second subsurface model is a marine transition zone model referred below as the TZ model 

with dimensions 18, 23,500 7,000 m. In this model, velocity varies between 1,042 m/s 000 × ×

and 7,626 m/s (Figure 9). FD discretization with a grid size of 30 m results in a system of 1.3 108 ×

linear equations.

As a third subsurface model, we use a portion of the SEG Overthrust (referred below as 

OT) model (Aminzadeh et al., 1997) with dimensions of 9870 9870 4620 m. In this model the × ×

velocity varies between 2,286 m/s and 6,000 m/s. FD discretization with a grid of 30 m in all 

directions results in a system of 2.4 107 linear equations.×

 Accuracy

First, we benchmark numerical solution of the Helmholtz equation 

(∆ + 𝑘2)𝑣 = ―𝛿(𝑥)                                                                                                                    (29)

with the analytical solution available for a homogeneous medium 

𝑣(𝑥,𝑦,𝑧) =
𝑒 ―𝑖𝑘 𝑥2 + 𝑦2 + 𝑧24𝜋 𝑥2 + 𝑦2 + 𝑧2

.                                                                                               (30)

We compute numerical solutions for different values of the grid step. Accuracy of the approximate 

solution is measured by metrics 𝑢ℎ(𝑥,𝑦,𝑧) 
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Geophysics 22

𝛽𝑘(𝑟) =

‖𝑢ℎ(𝑥,𝑦,𝑧) ― 𝑣(𝑥,𝑦,𝑧)‖𝐵(𝑟0,𝑟),𝑘‖𝑣(𝑥,𝑦,𝑧)‖𝐵(𝑟0,𝑟),𝑘                                                                              (31)

depending on the size  of the domain. In definition 31, index  stands for the type of the norm (𝑟 𝑘
) and 𝑘 = 1,2𝐵(𝑟0,𝑟) = {(𝑥,𝑦,𝑧)| 𝑟0 ≤ 𝑥2 + 𝑦2 + 𝑧2 ≤ 𝑟}                                                                (32)

denotes the concentric spherical layer where the norms are computed. Parameter  is used to 𝑟0

exclude the small singularity region around the origin. Metrics  are simple relative accuracies 𝛽𝑘(𝑟)

of the solution for the respective norms. Note that the accuracy also depends on the grid step .ℎ
We provide numerical results for the homogeneous model with dimensions of 5120 5120×

2560 m and sound velocity =1280 m/s. The wavefield was excited by a monochromatic 4 Hz × 𝑐0

point source placed at the center of the model (2560 m, 2560 m, 1280 m). We used three different 

grid steps, 64, 32 and 16 m, that correspond to 5, 10 and 20 points-per-wavelength ℎ =

respectively. The width of PMLs was taken to be 15 grid steps. In Figure 10 one can find graphs 

of functions  for the described problem setting. It is clear, that halving the grid step results 𝛽𝑘(𝑟)

in a four times reduction of the relative errors  and  which confirms the second-order 𝛽1 𝛽2

approximation of the method. For  while transitioning from  to  the reduction is worse 𝛽∞ ℎ/2 ℎ/4
which probably can be explained by stronger sensitivity of the  norm to perturbations.𝐿∞

For the second test, we used a 3D model with velocity being a linear function of depth and 

investigated convergence of the solution with decreasing grid step. For the same velocity model, 

we computed solutions  for steps  and , respectively. The solution  was 𝑢ℎ, 𝑢ℎ/2, 𝑢ℎ/4 ℎ, ℎ/2 ℎ/4 𝑢ℎ/4
used as a substitute for the exact solution. In Figure 11 one can find respective functions  𝛽𝑘(𝑟)
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Geophysics 23

which in this case provide information on deviation of solutions from . The second-𝑢ℎ, 𝑢ℎ/2 𝑢ℎ/4
order approximation is clearly confirmed for  and , but not for .𝛽1 𝛽2 𝛽∞
Strong scaling

For a problem which can be solved with an MPI solver and parallelization on different 

number of cluster nodes, the ‘scaling factor’ is defined as ratio  where runtimes  and  𝑡𝑠𝑒𝑞/𝑡𝑃 𝑡𝑠𝑒𝑞 𝑡𝑃
stand for one and  cluster nodes, respectively. 𝑃

For the OT velocity model and different values of frequencies, we measured the scaling 

factors of our solver (Figure 12). The FDFD solver scales well for moderate cluster sizes, but 

scaling becomes worse as the number of cluster nodes increases beyond about 4 to 8 nodes. In 

addition, scaling factors deteriorate with increasing frequency. The problem size also impacts the 

scaling, with better scaling for larger models as illustrated in Figure 13 where scaling factors for 

the OT model and the TZ models are compared. 

Scaling behavior can be explained as follows. The ET is less balanced on lower levels than 

on upper levels. The amount of computations defined by dashed ellipses in Figure 8 may vary from 

one ellipse to another. In other words, different cluster nodes are assigned different amounts of 

work, becoming unbalanced. Spatial variations of the sound velocity may cause unbalancing 

because numerical ranks depend on the local velocity and the frequency. At the highest level of 

the ET, the subtrees represent big parts of the domain that appear as results of the ND algorithm. 

Most likely the ‘average velocity’ for these big parts experiences minor variation from one part to 

another. However, if we move down along the tree the granulation becomes finer and variation of 

the velocity becomes higher. This leads to larger difference of numerical ranks, and associated 

unbalancing of the cluster nodes. 
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A similar cause of unbalancing also appears at lower levels of the ET when the parts of the 

computational domain become small parallelepipeds. These parallelepipeds have faces of two 

different types - the faces that are parts of the outer boundary of the domain and the faces that are 

parallel to separators. A small parallelepiped may have from zero to three faces that are parts of 

the outer boundary and from six to three faces parallel to separators. These differences cause 

different amount of computations associated with the different nodes of the ET.

Solution of a problem with the TZ model requires at least 32 cluster nodes, and we cannot 

use the definition of the scaling factor described above. In Figure 13, we show graphs of the ratios 

where  stands for runtime on 32 cluster nodes. Figure 13 also shows data for the smaller 𝑡32/𝑡𝑃 𝑡32

OT model revealing that scaling and hence performance is better for larger systems of equations 

using the FDFD approach.

Comparison to time-domain solver

We compare our solver with a Time-Domain Finite-Difference solver (referred below as 

TDFD) developed by the Seiscope consortium (see https://seiscope2.osug.fr). To simulate wave 

propagation in time domain, the initial-boundary value problem for the wave equation is solved 

by TDFD. To eliminate reflection of waves from the boundaries, the domain is surrounded with 

PML’s. The differential equation is approximated using fourth-order explicit FD scheme. The MPI 

implementation of the TDFD solver uses parallelization with respect to shots, so that one shot is 

assigned per single cluster compute node. No data exchange between nodes is performed because 

solutions for different shots are fully independent of each other.  Dependence of the TDFD solver 

runtime on the number of seismic shots and the number of compute nodes can be described by 

formula
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Geophysics 25

𝑡TDFD(𝑁nodes, 𝑁shots) = 𝑡TDFD(1,1)⌈𝑁shots𝑁nodes
⌉,                                                  (33)  

where stands for the least integer greater than or equal to , and depends on some ⌈𝑎⌉ 𝑎 𝑡TDFD(1,1) 

other parameters like the problem size, the sound velocity variability, the hardware parameters, 

etc. 

To get the solution in the frequency domain, Fourier transform is applied to the time 

domain solution. In TDFD, the frequency spectrum of the shots contains all time frequencies, so, 

multiple frequency components are obtained all at once. 

To underline the different approaches, our method is referred as the FDFD solver which 

stands for Frequency-Domain Finite-Difference solver. Results of accuracy tests are provided in 

Figure 14 (the OT model) and Figure 15 (the TZ model) in terms of functions  introduced in 𝛽𝑘(𝑟)
the previous section. In Figures 14 and 15 these functions are used to demonstrate the difference 

between the solution obtained with TDFD solver and the solution obtained with the FDFD solver.

For both models, solutions were computed using parameters listed in Table 2. Note that for 

each model the solutions were computed for three different frequencies. The corresponding 

numbers of grid steps for the FDFD solver are shown in columns ,  and , whereas the total 𝑁𝑥 𝑁𝑦 𝑁𝑧
number of grid points is in column  and the number of points-per-wavelength is listed under 𝑁
“ppw” column. For the TZ model, the snapshots of real part of the solution computed along the 

horizontal plane at a depth of one grid step are shown in Figure 16. 

Time-domain solution obtained via the TDFD solver contains components that correspond 

to all three values of the frequency. So, the solver was run once with a grid step of 30 m. The 

modeling time interval was [0, 10 s]. 
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Geophysics 26

For particular pairs of values , the measured run times (in seconds) are (𝑁nodes, 𝑁shots)

provided in Tables 3 and 4 in the form of fractions, where run time 𝑡TDFD = 𝑡TDFD(𝑁nodes, 𝑁shots) 

is put as the numerator, whereas  is put as the denominator. Note that value 𝑡FDFD(𝑁nodes, 𝑁shots)

of time for FDFD comprises of the sum of the runtime to solve the problem for all three 

frequencies. Ideal scalability of the TDFD solver with respect to  was assumed to fill in the 𝑁nodes

table instead of repeating multiple shot.

Tables 3 and 4 summarize computation times of the two solvers in terms of  and 𝑁shots

 (Figure 17). For few shots, TDFD solvers are relatively efficient, but for larger numbers of 𝑁nodes

shots and nodes, FDFD becomes relatively more efficient per shot. The thick line (Figure 17) is 

the 'line of equal performance' of the two solvers. For a given number of  , this line defines 𝑁nodes

the number of shots that is 'big enough' to fully reap the benefits of the FDFD solver and reach or 

exceed the numerical performance of TDFD solvers. For example, for a problem with a 

comparatively small number of shots that has to be solved on a particular cluster (a point close to 

point C of line segment CD), the fastest way would be using the TDFD solver. As the number of 

shots increases (the point moves to D along CD), starting from some number of shots, the FDFD 

direct solver becomes faster than TDFD solver. Another way to look at it is to fix the number of 

shots, such as defined by horizontal line AB. Then moving from point A towards B along 

horizontal segment AB means solving the same problem on clusters with increasing number of 

nodes. For a fixed number of shots, the FDFD direct solver would usually be faster for 

comparatively smaller clusters, but on bigger clusters the TDFD solver performs better. Such 

behavior can be explained with a help the following reasoning. For the TDFD solver, the runtime 

is roughly proportional to with coefficient  (cf. 28). The runtime for the 𝑁shots 𝑡TDFD(1,1)/𝑁nodes

FDFD solver can be described by a sum  representing time for 𝑡fact(𝑁nodes) + 𝑡solve(𝑁nodes, 𝑁shots)
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Geophysics 27

the factorization and time for the solving step correspondingly. In this sum, the first summand does 

not depend on the number of shots. To some extent, the dependence of the summand can be thought 

as approximately linear  Values of coefficients 𝑡solve(𝑁nodes, 𝑁shots)≅𝑡solve(𝑁nodes,1) ∙  𝑁shots.

  and  can be taken from Tables 3 or 4. For example, for the OT 𝑡TDFD(1,1)/𝑁nodes 𝑡solve(𝑁nodes, 1)

model , 0.4. This simple insight explains that if the number of 𝑡TDFD(1,1) = 161 𝑡solve(16, 1) =

shots increases, then FDFD starts to win from a certain value of shots.

In general, the necessary and sufficient condition for existence of points   (𝑁nodes, 𝑁shots)

where the FDFD wins is the following

𝑡TDFD(1,1)𝑁nodes
> 𝑡solve(𝑁nodes, 1).                                                      (34)

To satisfy this condition the right side of this inequality should be inversely proportional to  𝑁nodes,

or, in other words, the solving step is MPI parallelized.

Performance: comparison to Intel® MKL Parallel Direct Sparse Solver for Clusters

To estimate the efficiency of a solver, its performance data in GFlops (giga flops per 

second) are used. Among other parameters (the hardware, the software, the number of MPI 

processes, etc.) these data depend on the problem (more precisely, size of the model and some 

parameters that characterize the problem). To get performance data for the solver, one has to count 

the number of floating point operations used to compute the solution of the problem and measure 

the runtime. This approach works well for comparatively simple algorithms where the flops counts 

can be calculated. Sparsity of the matrix, use of the Low-Rank approximation, incorporating the 

iterative refinement in computations makes impossible rigorous counting of the floating point 

operations.
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Geophysics 28

Comparison to another solver is an alternative approach to get impression on the solver 

efficiency. We compared our solver to Parallel Direct Sparse Solver for Clusters from Intel® MKL 

(Intel® Parallel Studio XE 2017 Update 4) referred below as PARDISO. The comparison was 

made on a small homogeneous model of size  referred below as SH and the 201 × 201 × 101

medium size OT model described above (see Table 5). RAM data in Table 5 is the peak memory 

usage per node. It is clearly seen that our solver has essential advantage in memory usage but loses 

in performance on small problems. Starting from moderate size problems the solver outperforms 

MKL Cluster PARDISO.

CONCLUSIONS

We present a direct method for parallel solution of the acoustic wave equation in 3D 

heterogeneous media. To reduce memory consumption, the method utilizes intermediate data 

sparsity for compression. The compression technique is based on Low-Rank approximation of fill-

in blocks. It is applied directly to blocks lying below the diagonal of the triangular factor. The 

diagonal blocks are also compressed using HODLR format. These methods help to solve a system 

of ~ equations corresponding to large velocity models of interest to geophysical exploration. 109 

The strong scalability of the solver is good for a moderate number of cluster nodes and large 

enough problems. This direct solver is successfully used for geophysical modeling applications 

while some challenges remain to be resolved. Poor MPI scalability of the LDLT factorization for 

the number of compute nodes beyond 16 is one of the challenges. 

Comparing the FDFD solver with a TDFD solver reveals that each method has its strengths 

and weaknesses. Detailed numerical experiments with real-world scenarios using a transition zone 

model and Shaheen II supercomputer demonstrate the existence of the “line of equal performance” 

defined in terms of number of shots and available nodes. The time-domain solver performs better 
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Geophysics 29

for comparatively large ratios of Nnodes⁄Nshots , whereas the direct solver is relatively more efficient 

for  smaller ratios of Nnodes⁄Nshots.

While generally larger number of nodes become available with time (as computing power 

becomes cheaper), seismic acquisition experiences significant growth in trace density per square 

kilometer enabled by larger number of both sources and receivers. Concurrent “data tsunami” and 

increase in compute power may lead to diverse scenarios that geophysical community needs to be 

prepared to handle. Depending on available computing power and number of shots for a particular 

imaging or FWI problem, one or the other solver may be significantly more efficient. Therefore, 

the optimal FWI toolbox should contain both solvers and apply the most efficient for the specific 

scenario based on the “line of equal performance”.

In the future, the techniques used for solving the Helmholtz equation are planned to be 

extended to more complicated media (elasticity with possible anisotropy and viscosity).  Current 

version of the solver can solve around  equations. Additional optimization of factorization step 109

should allow computations for a larger models in the near future. 
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LIST OF FIGURES

Figure 1: Schematic view of domain . In , the solution is attenuated by 𝐷 = 𝐷 ∪ 𝐷PML 𝐷PML

introducing complex valued  functions in equation (3)  Homogeneous Dirichlet conditions 𝛼𝑖(𝑥𝑖) .

are posed on boundary ∂𝐷..

Figure 2: Three finite difference stencils for the approximation of the partial derivative 

.𝑢𝑧𝑧
Figure 3 Four stencils for the approximation of 𝑘2(𝑥)𝑢(𝑥).

Figure 4: For 50 randomly chosen directions of propagation of plane waves, dispersion 

error curves are plotted as functions of the reciprocal of the number of grid points per wavelength.  

The FD approximation is defined by operator 8 with optimal parameters from Table 1.

Figure 5. A schematic view of the ND algorithm comprising (a) first level separator #15 

partitioning the domain into the upper and the lower subdomains, (b) second level separators #13 

and #14 partitioning the domain into four subdomains, and (c) further partitioning by third level 

separators #9, #10, #11, #12 resulting in 8 subdomains. 

Figure 6. factor structure showing (left) the original and (right) the Low-Rank 𝐋 

approximation. Fill-in is shown by grey shading. See respective ET in Figure 7.

Figure 7: The ET corresponding to the matrix structure in Figure 6. The tree nodes 

correspond to the panels in Figure 6. Dependence of panel node #13 on nodes #9 and #10 is 

illustrated in Figure 6, left, as respective substructure of the matrix.

Figure 8: Mapping of the ET to cluster nodes. Dashed ellipses denote the ET nodes combined 

together and assigned to the same cluster node.

Figure 9: Cross-sections of the TZ velocity model.
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Figure 10: Relative errors of numerical solutions computed for grid steps  and  (64, 32, ℎ, ℎ/2 ℎ/4
16 m) in a homogeneous medium  as a function of the domain radius .𝑟

Figure 11: Relative deviation of solutions from  for a model with the velocity 𝑢ℎ, 𝑢ℎ/2 𝑢ℎ/4
being a linear function of the depth.

Figure 12: The scaling factors for direct solver as functions of the number  of cluster 𝑃
nodes shown for OT velocity model.

Figure 13: Scaling factors for the TZ (1.8x108 equations) and OT models (2.4x107 equations). 
𝑡32𝑡𝑃  

Observe higher scalability for larger TZ model.

Figure 14: For the OT model, relative deviations of solutions obtained with TDFD and 

FDFD methods.

Figure 15: Same as Figure 14 but for TZ model.

Figure 16: Horizontal snapshots of  the real part of the solution for TZ model. Left: 

frequency υ=2 Hz, depth 90 m;  Right: υ=7 Hz, depth 30 m.

Figure 17: Relative performance of the TDFD and FDFD solvers shown with number of 

shots (vertical axis) versus number of nodes (horizontal axis). The thick line defines the ‘line of 

equal performance’.

LIST OF TABLES

Table 1: Values of optimal parameters for stencil 8.

Table 2: Parameters of numerical experiments.

Table 3: OT model: Computation times for different combinations of  and .𝑁nodes 𝑁shots

Table 4: TZ model: Computation times for different combinations of  and .𝑁nodes 𝑁shots
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Table 5: Performance and memory comparison of our solver and MKL Cluster PARDISO. Data 

obtained 129 compute nodes using 129 MPI processes, 20 OMP threads. Each node has 128 GB 

RAM. The threshold for our solver was 10 ―4.
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Figure 1: Schematic view of domain D̃=D∪DPML. In DPML, the solution is attenuated by introducing complex 

valued  functions α_i (x_i )  in equation (3). Homogeneous Dirichlet conditions are posed on boundary ∂D̃.. 
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Figure 2: Three finite difference stencils for the approximation of the partial derivative uzz. 
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Figure 3 Four stencils for the approximation of k2 (x)u(x). 
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Figure 4: For 50 randomly chosen directions of propagation of plane waves, dispersion error curves are 

plotted as functions of the reciprocal of the number of grid points per wavelength.  The FD approximation is 

defined by operator 8 with optimal parameters from Table 1. 

75x47mm (300 x 300 DPI) 

Page 42 of 60GEOPHYSICS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60
This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 

© 2019 Society of Exploration Geophysicists.

D
o
w

n
lo

ad
ed

 0
4
/0

4
/1

9
 t

o
 1

3
0
.7

0
.8

.1
3
1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

E
G

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 T
er

m
s 

o
f 

U
se

 a
t 

h
tt

p
:/

/l
ib

ra
ry

.s
eg

.o
rg

/



 

Figure 5. A schematic view of the ND algorithm comprising (a) first level separator #15 partitioning the 

domain into the upper and the lower subdomains, (b) second level separators #13 and #14 partitioning the 

domain into four subdomains, and (c) further partitioning by third level separators #9, #10, #11, #12 

resulting in 8 subdomains. 
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Figure 6. L factor structure showing (left) the original and (right) the Low-Rank approximation. Fill-in is 

shown by grey shading. See respective ET in Figure 7. 
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Figure 7: The ET corresponding to the matrix structure in Figure 6. The tree nodes correspond to the panels 

in Figure 6. Dependence of panel node #13 on nodes #9 and #10 is illustrated in Figure 6, left, as 

respective substructure of the matrix. 
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Figure 8: Mapping of the ET to cluster nodes. Dashed ellipses denote the ET nodes combined together and 

assigned to the same cluster node. 
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Figure 9: Cross-sections of the TZ velocity model. 
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Figure 10 Relative errors of numerical solutions computed for grid steps h,h/2 and h/4 (64, 32, 16 m) in a 

homogeneous medium  as a function of the domain radius r. 
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Figure 11: Relative deviation of solutions uh, u(h/2) from u(h/4) for a model with the velocity being a linear 

function of the depth. 
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Figure 12: The scaling factors for direct solver as functions of the number P of cluster nodes shown for OT 

velocity model. 
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Figure 13: Scaling factors t32/t_P   for the TZ (1.8×108 equations) and OT models (2.4×107 equations). 

Observe higher scalability for larger TZ model. 
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Figure 14: For the OT model, relative deviations of solutions obtained with TDFD and FDFD methods. 
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Figure 15: Same as Figure 14 but for TZ model. 
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Figure 16: Horizontal snapshots of  the real part of the solution for TZ model. Left: frequency ν=2 Hz, depth 

90 m;  Right: ν=7 Hz, depth 30 m. 
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Figure 17: Relative performance of the TDFD and FDFD solvers shown with number of shots (vertical axis) 

versus number of nodes (horizontal axis). The thick line defines the ‘line of equal performance’. 
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Table 1: Values of optimal parameters for stencil 8. 𝛾1 0.6558 𝑤1 0.5756𝛾2 0.2945 𝑤2 0.1874𝛾3 0.0497 𝑤3 0.3588𝑤4 -0.1219

Page 56 of 60GEOPHYSICS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 

© 2019 Society of Exploration Geophysicists.

D
o
w

n
lo

ad
ed

 0
4
/0

4
/1

9
 t

o
 1

3
0
.7

0
.8

.1
3
1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

E
G

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 T
er

m
s 

o
f 

U
se

 a
t 

h
tt

p
:/

/l
ib

ra
ry

.s
eg

.o
rg

/



Table 2: Parameters of numerical experiments.

Model (Hz)𝜈  (m)ℎ ppw 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝑁 = 𝑁𝑥𝑁𝑦𝑁𝑧
5 90 5.1 110 110 52 629,200

7 60 5.4 165 165 78 2,123,550
OT

15 30 5.1 330 330 155 16,879,500

2 90 5.8 200 261 77 4,019,400

3 60 5.8 300 391 116 13,606,800
TZ

7 30 5.0 600 781 231 108,246,600
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Table 3: Computation times for different combinations of  and  in OT model 𝑁nodes 𝑁shots
Compute time is summarized as ratios 

𝑡TDFD𝑡FDFD.𝑁shots
1 128 512 1280

2 161/7,377 10,304/7,755 41,216/8,899 103,040/11,186

4 161/4,294 5,152/4,475 20,608/5,023 51,520/6,117

8 161/3,295 2,576/3,387 10,304/3,666 25,760/4,223𝑁nodes
16 161/2,927 1,288/2,978 5,152/3,132 12,880/3,439
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Table 4: Same as Table 3 but for for TZ model

𝑁shots
1 128 1280 12800

32 1,066 / 8,416 4,298 / 8,565 42,737 / 9,917 427,370 / 23,435

64 1,066 / 6,920 2,159 / 7,014 21,384 / 7,865 213,840 / 16,379

128 1,066 / 6,093 1,099 / 6,169 10,747 / 6,858 107,470 / 13,752𝑁nodes
256 1,066/ 6,093 1,099/ 6,130 5,450 / 6,475 54,500 / 9,922
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Table 5: Performance and memory comparison of our solver and MKL Cluster PARDISO. Data 

obtained 129 compute nodes using 129 MPI processes, 20 OMP threads. Each node has 128 GB 

RAM. The threshold for our solver was 10―4.
Model Measured data Our solver PARDISO

Factorization time (s) 967 543
SH

RAM (GB) 8.1 23

Factorization time (s) 836 2615
OT

RAM (GB) 17.9 49
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